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The earth becomes warmer...
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Increase in atmospheric CO, concentrations

Global Fossil Carbon Emissions
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Increase in atmospheric gas concentrations
Global warming potential:

Methane (CH,): 21 * CO, Nitrous oxide (N,O): *CO,
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Time (before 2005)

IPCC (2007) 4th assessment report



GHG inventories (EU-27 in 2007)
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GHG inventories according to UNFCCC
(04/2013)
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Agricultural greenhouse gases (without LULUCF)
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The manifold role of agriculture regarding climate
change

Climate polluter

Climate
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Agricultural greenhouse gases (without LULUCF)
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The concept of C sequestration
In soll

CO, —fixation via photosynthesis
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Soil organic matter and organic farming

> Increasing and maintaining soil organic matter (SOM) is a core
principle in organic farming

> ltis essential for plant nutrition and soil fertility built-up In
organic (= low external input) farming systems

> Diverse and legume containing crop rations and organic
manuring are integral measures in OF

> Hence SOM (= soil carbon sequestration) levels are higher
under OF practices?
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GHG mitigation through carbon storage in solls:
organic vs. non organic

Geographic distribution of the system comparisons for meta-analysis

74 studies globally with up to 211 paired comparisons
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More carbon in organically managed soils?

Number comparisons Category of datasets Number comparisons Category of datasets
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Higher soil organic carbon concentrations (%) and stocks (t hat)
under organic farming management.
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What influences differences in soil carbon?

Based on meta-regression, no significant drivers could be
identified, only tendencies:

> Management effects are stronger than site factors (temperature,
precipitation, clay content in soil).

> Higher inputs of external C inputs (= organic fertiliser) in organic
systems (1.20 vs. 0.29 Mg C haly1)

> Higher frequency of cropping of deep rooting forage legume in organic

systems. l

These are elements typical for mixed farming (integration of crop and
livestock production) and in organic farming mixed farming systems are
more frequent.
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Is carbon sequestration possible within organic
farming systems?

Number comparisons Category of datasets
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Mean difference in C sequestration rates (Mg C haly™)

Yes, it is possible. Net sequestration of 450 kg C haty! (=1.7 Mg CO,
eq haly?) for all organic systems; the potential is lower for for zero
net input systems (< 1.0 ELU hat): 70-270 kg C hat y1,
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What does it mean in the wider context?

Switching to organic agriculture with a net C sequestration rate
of 0.27 Mg C hal y-1 for net zero input systems...

> Would result in 0.37 Gt C sequestered per year globally (0.03 Gt C in
Europe, 0.04 Gt C in the United States), thus offsetting 3% of current
total GHG emissions (2.3% for Europe, 2.3% for the United States)

> Would offset 25% of total current agricultural emissions (23% for
Europe, 36% for the United States), and equaling approximately 25%
of the annual technical agricultural mitigation potential.

> The cumulative mitigation till 2030 would contribute 13% to the
cumulative reductions that would be necessary until 2030 to stay on
the path to reach the two degree goal by 2100 [56 Gt C globally from
2010 till 2030 according to the RCP2.6 scenario]
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And under Mediterranean climate?

Areas with Mediterranean climate in the world and number of
references selected for each area
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Pronounced C sequestration potential under
ORG in Mediterranean soils
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In ORG 0.97 Mg C haty?!t(=3.6 Mg CO, eqhaly?)
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Differences between ORG and CONV according to
different treatments, crops, etc.
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N20 emissions from agricultural soils
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Microbial control of N,O formation and
reduction

Denitrification

NOy —— NO 225 N,0 ——N,

|

Nitrification NOy
N,O Ostrom & Ostrom, 2011
0 ol H,0 — ——
- T . Nitrifier-denitrification
NH;—— NH,0H-#2.| NOj+—— NO =2+ N,0 —— N,

Nitrification is the dominating source for N20O formation in
Well aerated soils water-filled pore space (WFPS) < 60%; denitrification is
the dominating source for N20O formation in under anoxic conditions at

60-90% WFPS (Bateman and Baggs, 2005).
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Determination of soil-derived N,O fluxes

Gas samplingin the field Sample transport Determination of gas
concentrationsin the
laboratory

8
Gas-tight vial \ I|
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Agricultural soils as source for N,O (eg. Arable
soil)
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N,O emissions from soils
Proximal influencing factors (direct)

> Nitrate and ammonium availability
> Soil water <->oxygen conten

> Carbon availability
> pH
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N,O emissions from soils

Distal controls (Indirect factors)

> Climate: Temperature and precipitation; freezing-
thawing cycles

> Solil: Soll type; texture (e.g. clay content)

> Bodenbewirtschaftung: Fertilisation intensity and
fertilisation type (1 kg N causes 0.3-3.0 kg N,O-N/ha,
IPCC); soll tillage; liming (inhibition of N,O reduktion to
N, at low pH)
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GHG emissions and organic farming

> Nitrogen fixing legumes, green and organic manuring are key
elements in organic crop rotation and bear the potential of N,O
losses when incorporated/applied to the soil.

> Easily available synthetic N fertiliser can be applied according
to the plant nutrient status.

> But far more less (non easily availabe organic) N fertiliser are
applied in organic farming.

> Hence GHG emission rates (esp. N,O) are lower under OF
practices?
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Meta study II: Soil-derived GHG fluxes (N,O, CH,) in soils
under organic and non-organic management

18 studies globally with up to 98 paired comparisons
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Less N,O from organically managed soils?

M0 emissions per acreage (kg MeD-Mha 3" GWP ® NoO emissions per acreage (kg COseq ha™ 37 GWP ° M0 emissions per yield (kg COseq. 7 DM)

land-use M * cl® p studies  comp. © MD* cl= P studies comp. © MWD * cl® B studies  comp.©
all {annual)’ -1.04 041 0,00 12 i) -485 11 0. 12 il 50.5 238 0,00 T 25
arable -1.01 042 0,00 1 a7 -472 195 0. 11 a7 52.0 e 0,00 i 23
grassland -2.42 516 0,38 2 3 -1133 24148 0.38 2 3 32.1 1923 074 2 2
nce-paddies -1.28 222 022 1 3 -850 1033 0.2z i 3 =257 423 1 031 1 3
overall® -1.03 0.32 0.00 1B a8 -432 150 0.0 18 a3 0.7 288 004 B an

Related to area: ca. 0.5t hatlyr! less CO, eq. in form of N,O
under organic management

Related to yield: ca. 0.05t ha! yr! more CO, eq. in form of
N,O under organic management
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N,O (N-Input/N,O-N) emission factors under organic
and non-organic
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Farming systems per land use

N,O emission factors show large uncertaintities for organic

systems; annual measurements or even throuhgout the entire crop

rotation are required.
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Agricultural greenhouse gases (without LULUCF)
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Paddy rice (= wetland) soils as a source for
methane
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