
Arable, grassland and forest soils (= upland soils) are a sink for atmospheric methane through methane oxidation (eg. potato field)

Methane and nitrous oxide fluxes in arable soils

Climate relevance: positive contribution of CH_4 oxidation (ca. -20 kg CO_2 eq/ha * yr) is rather insignificant in relation to the negative contribution of N_2O from agricultural soils (ca. +1.300 kg CO_2 eq/ha * yr)

CH₄ oxidation in soils

Proximal controls

- CH₄ availability
- Soil water <-> O₂ content
- Availability of ammonium and nitrate in soil solution (Inhibition of CH4 oxidation through NH₄⁺ or NO₃⁻)
- Temperature

Less CH_4 (or more CH_4 oxidation) from/in organically managed soils?

	CH ₄ fluxes per acreage (kg CH ₄ -C ha ⁻¹ a ⁻¹)					CH ₄ fluxes per acreage (kg CO ₂ -eq. ha ⁻¹ a ⁻¹) ^f					CH ₄ fluxes per yield (kg CO ₂ -eq. t ⁻¹ DM)				
land-use	MD*	CI ^b	p	studies	comp. c	MD*	CI ^b	p	studies	comp. °	MD*	CI ^b	p	studies	comp. °
arable	-0.09	0.20	0.06	3	8	-3.1	3.3	0.06	3	8	-2.12	2.15	0.05	2	5
rice-paddies	10.55	4.77	0.00	1	3	1097	242	0.00	1	3	156.0	31.8	0.00	1	3

Only few studies, related to area and yield increased methane oxidation in organically managed soils, but increased methane emission from organically managed rice paddies.

Skinner, Gattinger et al., STOTEN, submitted

What is most effective in GHG mitigation in crop production?

27.29

7.23

1

180.68

145.70

org

non-org

rice-paddies

land-use		Mean	SD	studies	treatment	s Me	an	SD	studies	treatme	ents	-	
all (annual) *	org	2.71	1.02	12	44	12	70	476	12	44		-	
	non-org	3.14	1.15		58	143	37	536	12	58			
arable	org	2.58	1.00	11	41	120	09	470		41			
	non-org	2.97	1.00		55	130	92	468	11	55			
grassland	org	3.22	0.85	2	3	15	97	398	2	3			
	non-org	5.64	2.52		3	26	3	1118		3			
rice-paddies	org	0.89	0.16	1	3	41		76		3			
	non-org	2.28	0.30		3	10	61	142	1	٩			
-	org	5.33	4.60	18	64	249	97	- = a	saving	g of c	ca. 4.0	Mg C	O_2
overall ^b	non-org	6.68	4.57		79	31:	20	eq	ha ⁻¹ y	/-1			
	CH ₄ flux	es per ac	reage (kg	CH₄-C ha [*]	a ⁻¹)		GVP	CH₄ fluxe	s per acreage	e (kg CO ₂ -	•eq. ha ⁻¹ a ⁻¹)	-	
land-use			Mean	SD	studies	treatments		lean	SD	studies	treatments	-	
arable	org		-0.61	0.13	3	3		0.2	4.2	3	3	-	
	non-or	g	-0.54	0.11	3	8	-	8.0	3.6	3	8		

3

3

910

241

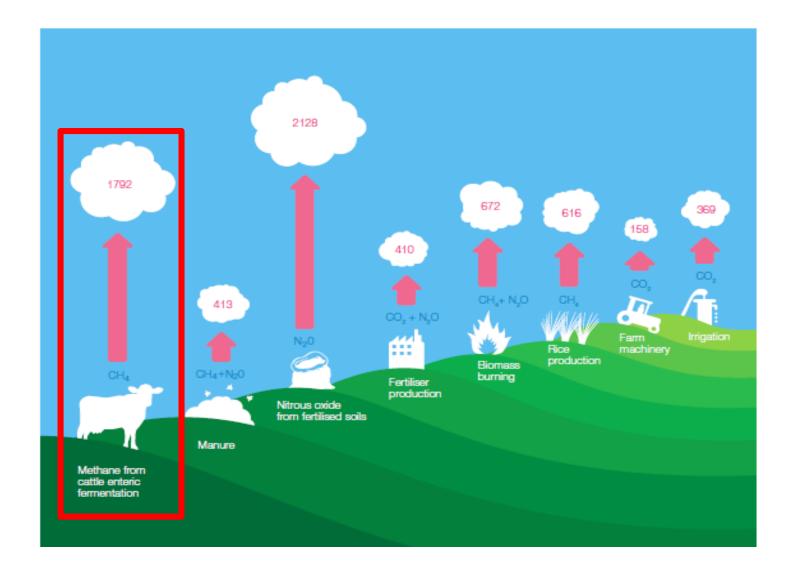
1

3

3

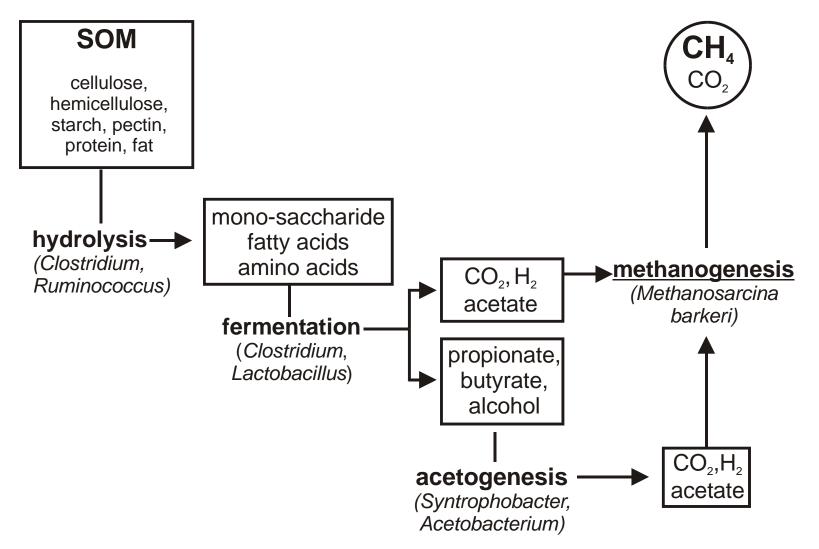
What is most effective in GHG mitigation in crop production?

- Conversion from wetland to upland rice production (saving of 4.0 Mg CO₂ eq ha⁻¹ y⁻¹)
- Restoration of farmed organic soils (saving of 10.0 Mg CO₂ eq ha⁻¹ y⁻¹; Freibauer et al., 2004), restricted agricultural utilisation
- C sequestration by conversion to OF (saving of 1.7 Mg CO₂ eq ha⁻¹ y⁻¹; Gattinger et al., 2012), not permanent, less yield
- C sequestration by adoption of reduced tillage (saving of up to 1.0 Mg CO₂ eq ha⁻¹ y⁻¹) not permanent
- N₂O mitigation by conversion to OF (saving of 0.5 Mg CO₂ eq ha⁻¹ y⁻¹; Gattinger et al., 2012), *less yield*
- N₂O mitigation by site-specific fertilisation (saving of up to 30%; Sehy et al., 2003)
- C seq. and N₂O mitigation by converting to OF along with reduced tillage and site-specific fertilisation,...


Contents

Background

- GHG emissions and its mitigation potential in crop production
- GHG emissions and its mitigation potential in livestock systems
- The potential of organic agriculture to adapt to climate change
- Outlook for future agriculture



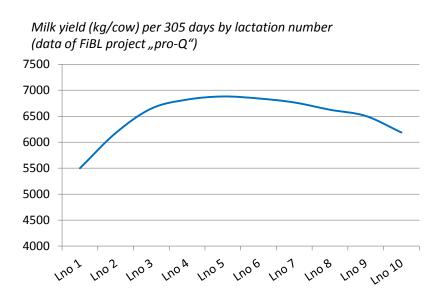
Agricultural greenhouse gases (without LULUCF)

Bellarby et al. 2008

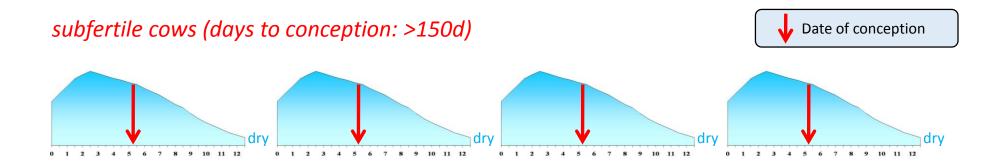
The anaerobic metabolism: from cellulose to methane

Mitigating GHG emissions in animal husbandry

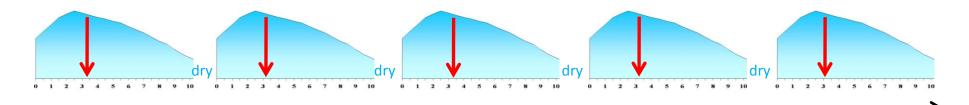
- Conventional approach
 - Intensification of production
 - Genetic improvement (more product units per animal)
 - Changing ruminal metamolism by additives and modified diets
- Sustainable approach
 - Physiological improvement of milk yield curves
 - Animal welfare aspects
 - Integrated herd health management
 - Optimized (not maximized) reproduction parameters


Animal health and climate protection

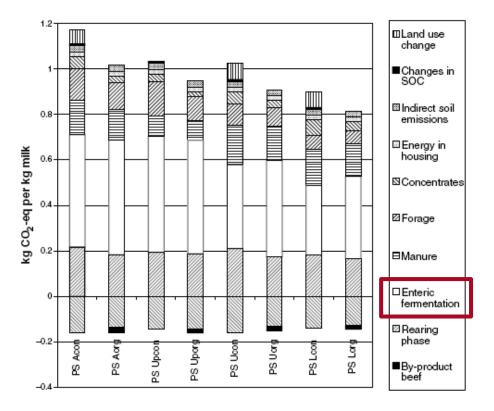
- General health improvement and longevity
- Udder health improvement
- Fertility improvement
- Rearing management


Health, Longevity and climated produced in the first period

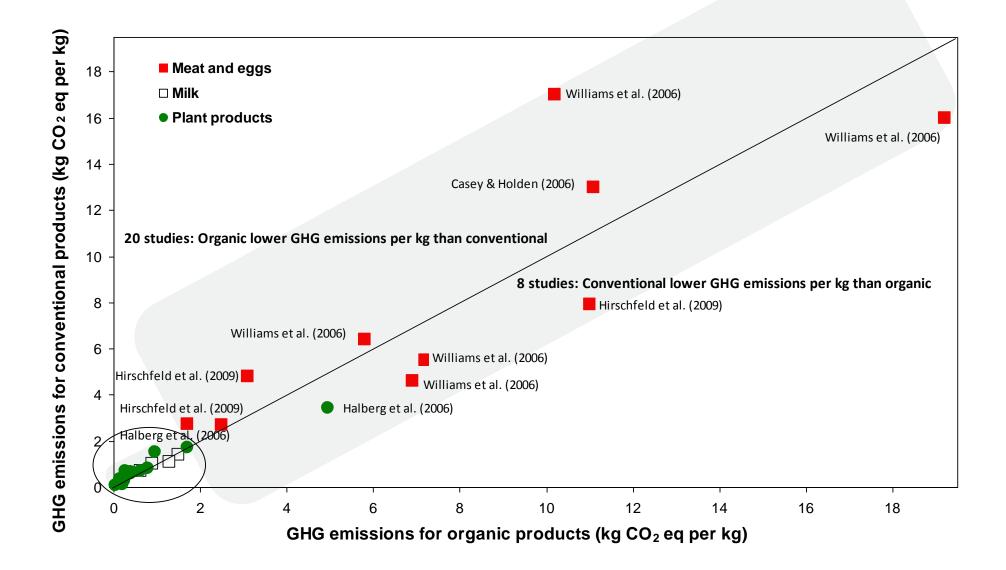
- Replacement strongly depends on animal health
- Replacement intensity increases rearing days per farm
- Health improvement reduces
 culling rate
- Prolongation of LNo by 1 lactation leads to 23% less "unproductive" days
- Milk yield optimum during 6th lactation!


	ØСН	Increasing longevity			
Mean Lactation No	3.3	4.3	5.3		
Replacement rate per year	~30%	~23%	~19%		
"Unproductive" days due to rearing* * Age at 1st calving: 30 m	277/cow	212/cow (-23%)	173/cow (-38%)		

Lactation curves depending on fertility


fertile cows (days to conception <100 days)

Milk yield difference after 5 years: +5000 kg


GHG emissions in cattle husbandry

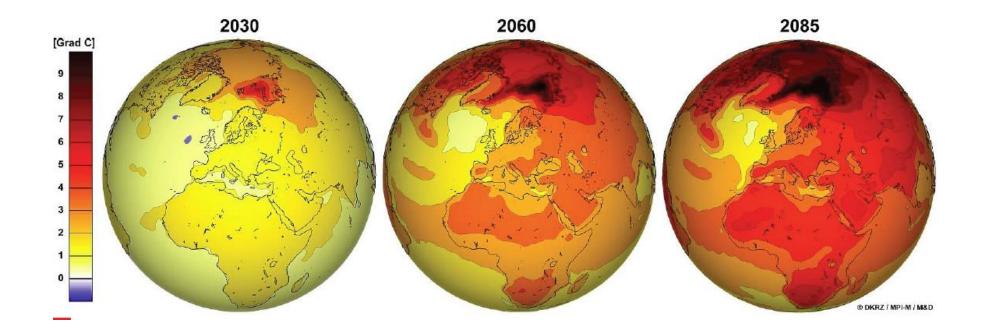
- Very complex issue, requires LCA approaches
- also emissions resulting form manure management, fodder and concentrate production incl. LUC need to be considered.
- Lower GHG emissions per kg milk in organic dairy production in Austria.

GHGE (kgCO2-eq) per kg milk for eight Dairy production systems in Austria (Hörtenhuber et al., 2010)

Climate relevance of animal products

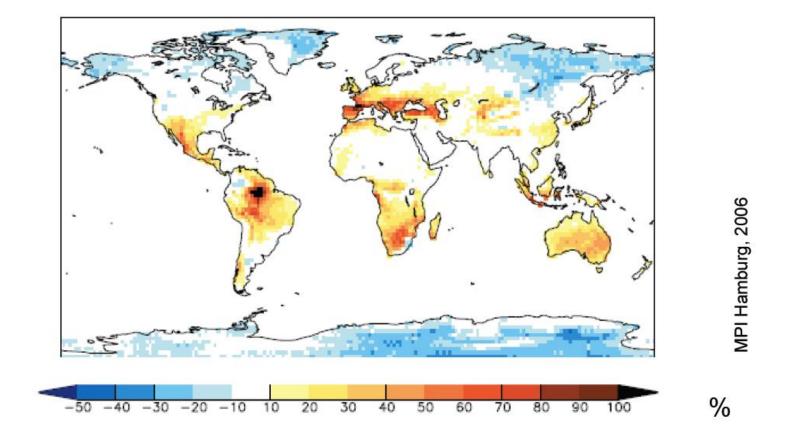
Knudsen et al., 2011

"Please eat less meat. Meat is a very carbon intensive commodity."


Rajendra Pachauri, Chair IPPC, Nobel Laureate 2007

Contents

- Background
- GHG emissions and its mitigation potential in crop production
- GHG emissions and its mitigation potential in livestock systems
- The potential of organic agriculture to adapt to climate (and global) change
- Outlook for future agriculture



Estimated global warming

Simulierte Temperaturänderung mit ECHAM5 / MPI-OM: IPCC Szenario A1B

Estimated changes in dry periods

Change of maximum dry periods until 2071-2100 related to the years 1961-1990