

SOLMACC Workshop: Developing policy recommendations to address the challenge of climate change in agriculture Brussels: November 27, 2017

Agriculture's contribution in mitigating climate change: Results from the SOLMACC farms

Lin Bautze SOLMACC Researcher

Agricultural GHG Emission der EU

Currently around **10 % of direct GHG emissions** from the EU derive from the agriculture (Danila et al., 2016)

The food system: around **33 - 50% of total GHG emissions** via the production, processing, transportation, consumption and food waste (Muller et al., 2016)




Figure: GHG emissions of the EU- agriculture sector (based on Danila et al., 2016)

The Potential of Organic Agriculture

- no synthetic fertilizers (production, transport, utilization)
- reduced emissions from livestock feed
- higher carbon sequestration (Gattinger et al., 2012),
- lower N2O emissions per hectare (Skinner et al., 2014)
- around 17% of agricultural GHG emissions could be reduced (Muller et al. 2016)

Co-benefits of Organic Agriculture

At the same time, organic agriculture offers co-benefits:

- climate change adaptation
- biodiversity
- aquatic systems
- human health
- animal welfare

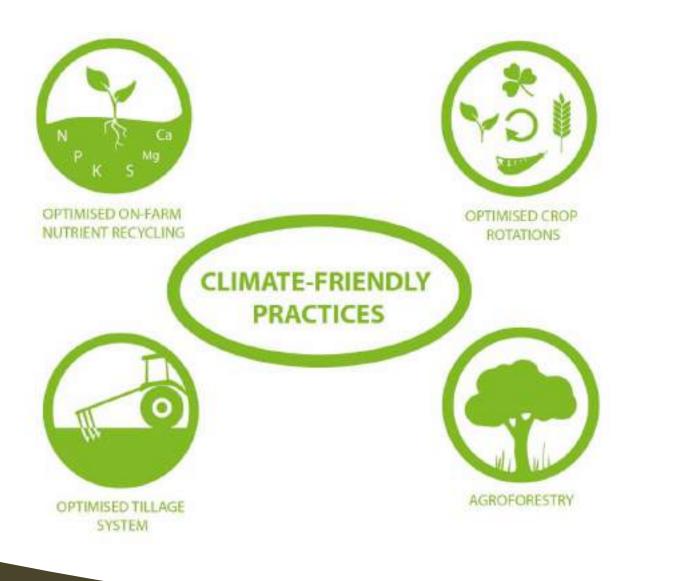
Strategies for Organic- and Low-input-farming to Mitigate and Adapt to Climate Change (SOLMACC)

PROJECT LOCATION: DE, IT, SE, Brussels

DURATION: Start: 01/09/2013 - End: 30/09/2018

PROJECT'S IMPLEMENTORS:

- Coordinating Beneficiary: Ekologiska Lantbrukarna, SE
- Associated Beneficiaries: IFOAM EU Group (Day-to-day Coordinator), Brussels; AIAB, IT; Bioland Beratung GmbH, DE; FiBL, DE



Demonstration Network

- promote wider adoption of innovative practices
- GHG emissions reduce
- farmer's resilience improve
- co-benefits are demonstrated
- knowledge shared with interested stakeholders

48 SOLMACC Practices

Pictures (from top): © Gut Krauscha: Turning of the compost piles ©Daniele Fontanivse – Cabbage field at Caramadre,Alföldi, FiBL,© Kjell Sjelin in Hånsta Östergärde

Optimized Nutrient Management

N Ca P Mg K S

- composting
- MC treatment
- biogas production and/or utilization
- mobile livestock systems

Farmyard Manure Composting*

Farm	Amount Farmyard Manure (DM kg)	Reduction (total in kg CO2-eq.)		
		Minimum	Average	Maximum
Fontanabona (IT)	40	2 360	13 160	16 880
Kreppold (DE)	115	6 773	37 769	48 446
Gut Krauscha (DE)	215	12 700	70 817	90 836
Relevant mitigation potential		- 9%	- 49%	-63 %

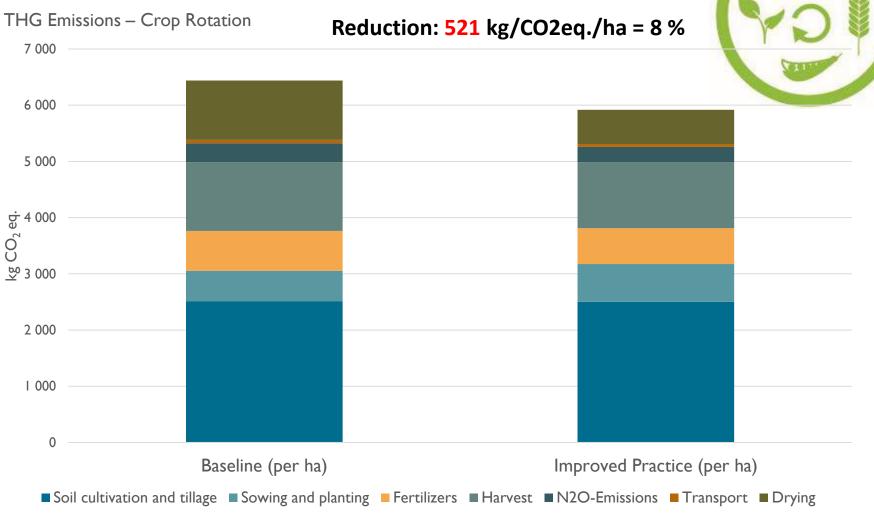
*preliminary results. Calculations 2017

Mobile chicken stall: Hånsta Östergärde, SE

CO2 mitigation by:

- Reduced transport of manure
- Reduced transport/production of feed

Mq


Optimized Crop Rotation

- Introduction and/or increasing percentage of grain and/or forage legumes
 - > Stabilisation of soil fertility, N-fixation (Leithold et al., 2015)
 - > Average C-sequestration of 0.32 Mg ha⁻¹ a⁻¹ by cover crops (Poeplau & Don, 2015)

Optimized Crop Rotation: Kreppold (DE)*

*preliminary results. Calculations 2017

Reduced Tillage

- Reduced frequency
- Reduced depth
- No tillage

Reduced Tillage

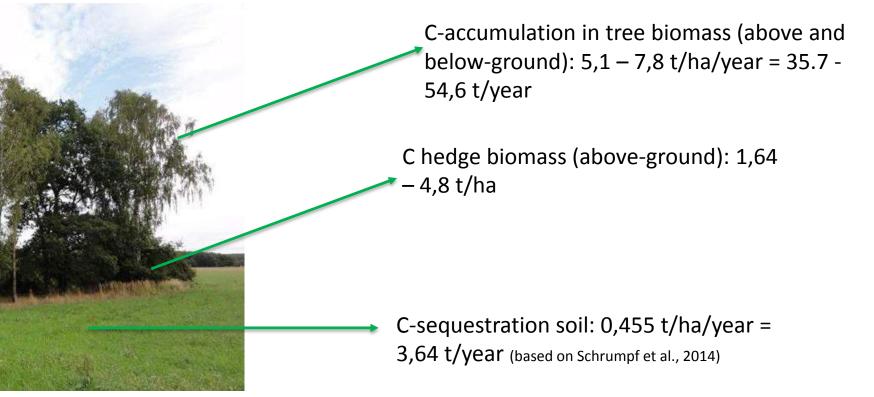
Advantages for climate change mitigation

- Reduced fossil fuel consumption (depends on machines, soil types/texture and farm size)
 - > up to 20 kg C ha⁻¹ year⁻¹ (Johnson et al., 2007; Ricosky & Archer, 2007)
- Potential carbon sequestration
 - > 143 g m-2 (Cooper et al., 2016)

Agroforst and Landscape Elements

Implementation of different agroforestry systems:

- Boundary hedges
- Buffer stripes
- Alley cropping
- Silvopasture (lifestock integration)



Agroforst: Kreppold (DE)*

8 ha: (boundary hedges: 1 ha, forest: 7 ha)

*preliminary results. Calculations 2017

Summary and Conclusions

>Agriculture system has to achieve many goals

> Organic agriculture has a high potential for synergies

ORGANIC FARMERS COUNTERING CLIMATE CHANGE .

Thank you very much for your Attention!