

Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l'agriculture biologique



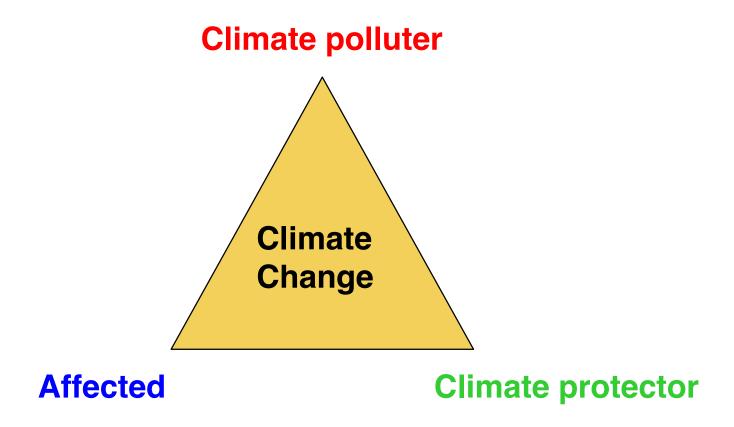











# The climate relevance of organic farming systems – what do we know?

**Andreas Gattinger** 

andreas.gattinger@fibl.org



### The manifold role of agriculture regarding climate change





# Organic Farming and Climate Change at FiBL Focus: Emission reduction

Information/Dissemination: Bio-Sektor, Verbände, **Betriebe Scientific Basis:** - Feldmessungen **Process and** - Reviews/Meta-Analysen system knowledge, **Climate balance** - Prozessmodellierungen - Betriebserhebungen Implementation: - Klima-Betriebsmodell - SMART - carbon-offset Methodologien - politische Fördermassnahmen



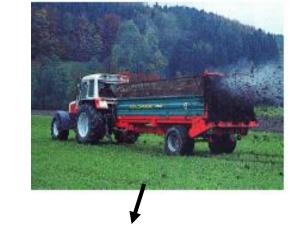
More soil carbon in soils under organic management?

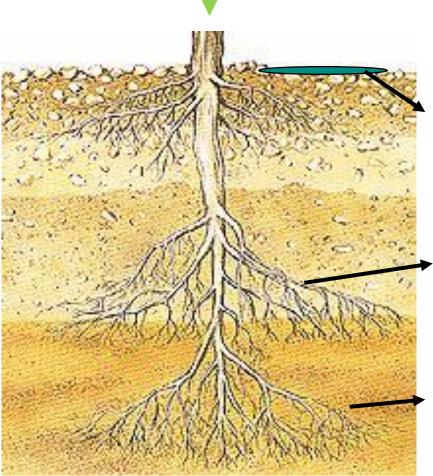
> Less GHG emissions from soils under organic management?





More soil carbon in soils under organic management?


Less GHG emissions from soils under organic management?

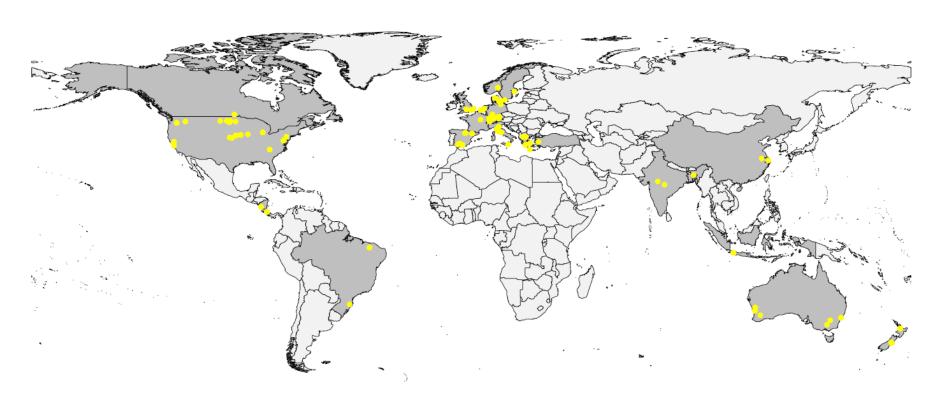





# The concept of C sequestration in soil

**CO<sub>2</sub>** –fixation via photosynthesis

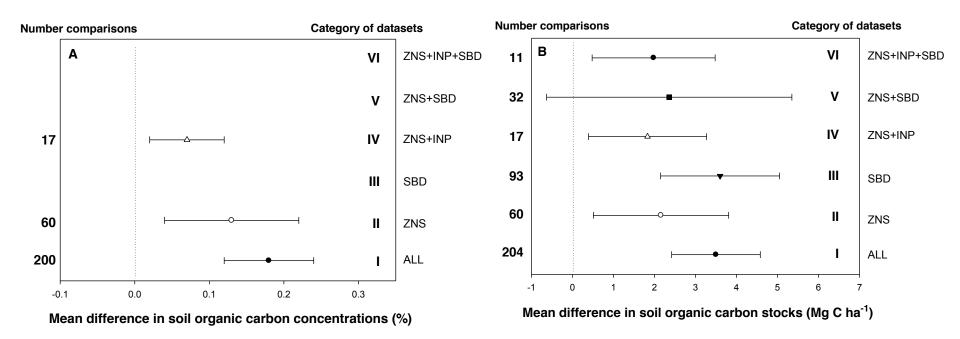





**Transformation into soil organic matter (Humus formation)** 



# GHG mitigation through carbon storage in soils: organic vs. non organic

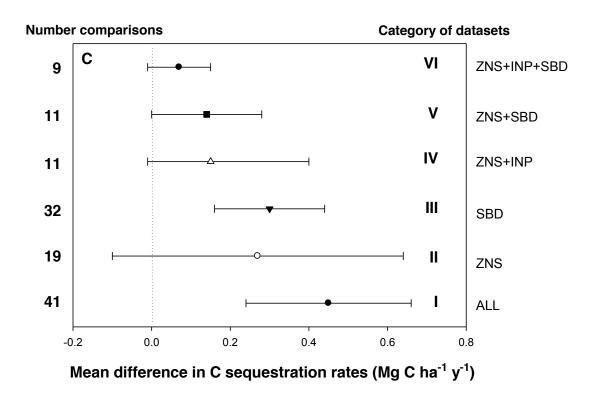

Geographic distribution of the system comparisons for meta-analysis



74 studies globally with up to 211 paired comparisons



#### More carbon in organically managed soils?




Higher soil organic carbon concentrations (%) and stocks (t ha<sup>-1</sup>) under organic farming management.





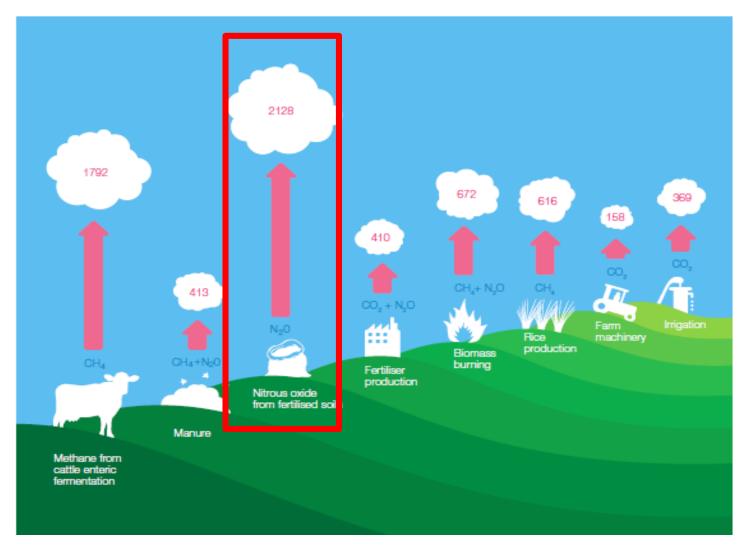
# Is carbon sequestration possible within organic farming systems?



Yes, it is possible. Net sequestration of 450 kg C ha<sup>-1</sup> y<sup>-1</sup> (= 1.7 Mg CO<sub>2</sub> eq ha<sup>-1</sup> y<sup>-1</sup>) for all organic systems; the potential is lower for for zero net input systems (< 1.0 ELU ha<sup>-1</sup>): 70 - 270 kg C ha<sup>-1</sup> y<sup>-1</sup>.

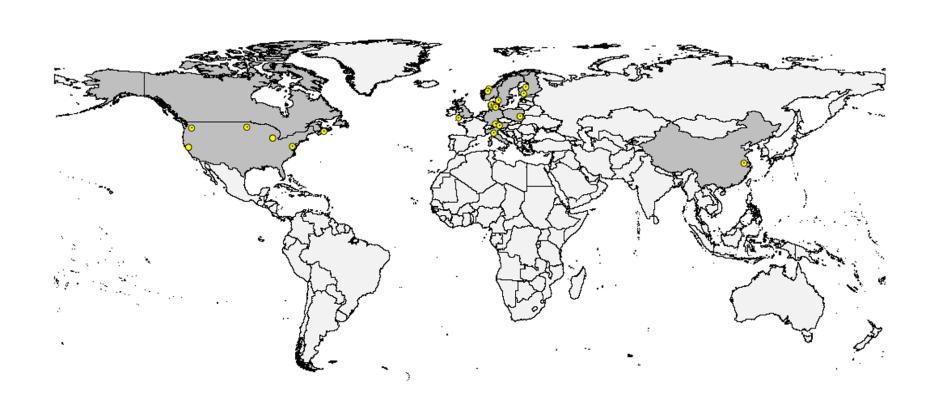





More soil carbon in soils under organic management?

> Less GHG emissions from soils under organic management?






#### N2O emissions from agricultural soils





### Meta study II: Soil-derived GHG fluxes (N<sub>2</sub>O, CH<sub>4</sub>) in soils under organic and non-organic management



18 studies globally with up to 98 paired comparisons



### Less N<sub>2</sub>O from organically manaded soils?

|               | Area-scaled N <sub>2</sub> O emissions<br>(kg N <sub>2</sub> O-N ha <sup>-1</sup> a <sup>-1</sup> ) |      |      |         |         | Area-scaled GWP <sup>d</sup> N <sub>2</sub> O emissions<br>(kg CO <sub>2</sub> -eq. ha <sup>-1</sup> a <sup>-1</sup> ) |                 |      |         |         | Yield-scaled GWP d N2O emissions<br>(kg CO2-eq. t - 1 DM) |       |      |         |         |
|---------------|-----------------------------------------------------------------------------------------------------|------|------|---------|---------|------------------------------------------------------------------------------------------------------------------------|-----------------|------|---------|---------|-----------------------------------------------------------|-------|------|---------|---------|
| Land-use      | MD <sup>a</sup>                                                                                     | CI b | p    | studies | comp. c | MD <sup>a</sup>                                                                                                        | CI <sub>p</sub> | p    | studies | comp. c | MD <sup>a</sup>                                           | CI b  | p    | studies | comp. c |
| All (annual)f | - 1.05                                                                                              | 0.34 | 0.00 | 12      | 70      | -492                                                                                                                   | 160             | 0.00 | 12      | 70      | 42.4                                                      | 33.1  | 0.01 | 7       | 25      |
| Arable        | -1.06                                                                                               | 0.35 | 0.00 | 11      | 67      | -497                                                                                                                   | 162             | 0.00 | 11      | 67      | 41.1                                                      | 34.2  | 0.02 | 6       | 23      |
| Grassland     | -2.33                                                                                               | 5.40 | 0.40 | 2       | 3       | -1091                                                                                                                  | 2531            | 0.40 | 2       | 3       | 45.6                                                      | 190.3 | 0.64 | 2       | 2       |
| Rice-paddies  | -1.38                                                                                               | 2,22 | 0.22 | 1       | 3       | -646                                                                                                                   | 1040            | 0.22 | 1       | 3       | -25.4                                                     | 49.2  | 0.31 | 1       | 3       |
| Overallg      | -0.93                                                                                               | 0.25 | 0.00 | 18      | 98      | -434                                                                                                                   | 118             | 0.00 | 18      | 98      | 30.7                                                      | 28.9  | 80.0 | 8       | 30      |

<sup>&</sup>lt;sup>a</sup> MD, Mean Difference under organic treatments; negative values mean less emissions compared to non-organic treatment.

### Related to area: ca. 0.5 t ha<sup>-1</sup> yr<sup>-1</sup> less CO<sub>2</sub> eq. in form of N<sub>2</sub>O under organic management

Related to yield: ca. 0.05 t ha<sup>-1</sup> yr<sup>-1</sup> more CO<sub>2</sub> eq. in form of N<sub>2</sub>O under organic management



b ±95%confidence interval (Q).

<sup>&</sup>lt;sup>c</sup> Comparisons.

d Greenhouse Warming Potential (GWP).

e EF: Emission factor; total inputs: external inputs plus those from within the field e.g. N fixation and plant residues.

f All annual measurements excl. rice (arable & grassland).

g All landuse types excl. rice; annual and short time measurements.

No data available for respective land-use type.

### Less CH<sub>4</sub> from organically manaded soils?

|              | Area-scaled CH <sub>4</sub> fluxes (kg CH <sub>4</sub> -C ha <sup>-1</sup> a <sup>-1</sup> ) |      |      |         |         | Area-sc         | aled CH <sub>4</sub> fl | CO <sub>2</sub> —eq. ha | -1 a <sup>-1</sup> ) f | Yield-scaled CH <sub>4</sub> fluxes (kg CO <sub>2</sub> —eq. t <sup>-1</sup> DM) |                 |      |      |         |         |
|--------------|----------------------------------------------------------------------------------------------|------|------|---------|---------|-----------------|-------------------------|-------------------------|------------------------|----------------------------------------------------------------------------------|-----------------|------|------|---------|---------|
| Land-use     | MD <sup>a</sup>                                                                              | CI b | p    | Studies | Comp. c | MD <sup>a</sup> | CI b                    | p                       | Studies                | Comp. c                                                                          | MD <sup>a</sup> | CI b | p    | Studies | Comp. c |
| Arable       | -0.10                                                                                        | 0.15 | 0.01 | 3       | 8       | -3.2            | 2,5                     | 0.01                    | 3                      | 8                                                                                | -2.10           | 2,33 | 0.08 | 2       | 5       |
| Rice-paddies | 9.37                                                                                         | 8.19 | 0.00 | 1       | 3       | 950             | 415                     | 0.00                    | 1                      | 3                                                                                | 128,3           | 26.1 | 0.00 | 1       | 3       |

a MD Mean Difference under organic treatments; negative values mean (higher) uptake, positive (higher) emissions compared to non-organic treatment.

Only a few studies: in arable soils increased CH4 uptake under organic, but in riced paddies highest CH4 emission under organic management



b ±95%confidence interval (Q).

c Comparisons.

More soil carbon in soils under organic management?

Less GHG emissions from soils under organic management?





